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efficacious in some problems in analytical dynamics that have resisted easy, general formu-
lations, and in obtaining the equations of motion for complex multi-body systems. We
explore the ease and simplicity that suitably used zero-mass particles can provide in formu-
lating and simulating the equations of motion of a rigid, non-homogeneous sphere rolling
under gravity, without slipping, on an arbitrarily prescribed surface. Computational results
comparing the significant difference in the motion of a homogeneous sphere and a non-
homogeneous sphere rolling down an asymmetric arbitrarily prescribed surface are
obtained, along with measures of the accuracy of the computations. While the paper
shows the usefulness of zero-mass particles applied to the classical problem of a rolling
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1 Introduction
Particles whose mass is zero, referred in this paper as zero-mass

particles, are almost never used in classical nonrelativistic mechan-
ics since from a physical standpoint no forces can be applied to
them, and hence their accelerations cannot be uniquely found.
While photons have zero mass and carry energy and momentum
in special relativity, in nonrelativistic mechanics, the addition of
such zero-mass particles to any unconstrained mechanical system
causes the entire mass matrix of that system to become singular,
and since the mass matrix is then noninvertible, the accelerations
of the system to the given forces cannot be found. However,
advances in the development of the explicit equations of motion
of constrained mechanical systems with singular mass matrices
permit their use under certain circumstances. This paper shows
that the use of such particles can be very efficacious in some prob-
lems in analytical dynamics that have resisted easy, general formu-
lations and in obtaining the equations of motion for complex
multi-body systems. We explore the ease and simplicity that suita-
bly used zero-mass particles can provide in formulating and simu-
lating the equations of motion of a rigid, non-homogeneous
sphere rolling under gravity, without slipping, on an arbitrarily pre-
scribed surface. Computational results comparing the difference in
the motion of a homogeneous sphere and a non-homogeneous
sphere rolling down an asymmetric arbitrarily prescribed surface
are obtained, along with measures of the accuracy of the computa-
tions. While the paper shows the usefulness of zero-mass particles
applied to the classical problem of a rolling sphere, the development
given is described in a general enough manner to be applicable to
numerous other problems in analytical and multi-body dynamics.

A useful approach in the development of the explicit equations of
motion for general, multi-body mechanical systems is to use a
simple three-step procedure. The first step involves the setting
down of the equations of motion of the unconstrained system,
wherein the coordinates that describe the position of the system
are all assumed to be independent of each other; the second step
involves the setting down of the kinematical and dynamical con-
straints; and the third involves obtaining the equations of motion
of the constrained system, using the relations developed in the pre-
vious two steps. This final step, which gives the explicit equations
of motion for the constrained system, can be taken by directly using
the fundamental equation of constrained motion. While this three-
step procedure was first established some time ago [1–5], the
explicit equation of motion obtained through its use required that
the mass matrix of the unconstrained system be positive
definite—a circumstance that usually occurs in analytical dynamics.
A decade later, this requirement was relaxed, and an explicit equa-
tion of motion for constrained systems whose unconstrained equa-
tions of motion have semi-positive definite mass matrices was
developed [6,7]. The most common way in which such singular
mass matrices can arise in complex multi-body systems is when a
constrained mechanical system is described through the use of
more coordinates than the minimum number needed. The use of
such additional coordinates can greatly simplify the modeling
task, provide clarity and ease of description of the multi-body
dynamics, and yield general formulations for systems that have
often been difficult to obtain. The three-step procedure described
earlier is important in ensuring that a proper description of
complex multi-body systems can be systematically obtained [8].
It provides a framework for the proper use of zero-mass particles
to facilitate the derivation of the equations of motion for such
systems. A further refinement and simplification of the approach
proposed in Ref. [7] that also considerably improves computational
efficiency is provided in Ref. [9].
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This paper uses the abovementioned three-step procedure to
describe the motion of a non-homogeneous, rigid sphere rolling
under gravity, without slipping, on an arbitrarily prescribed
(rough) surface. We make explicit use of one or more zero-mass
particles to formulate its equations of motion. We show that the
use of such zero-mass particles greatly facilitates the mathemati-
cal description of the dynamical system thereby permitting a
simple, general formulation of the problem. While we show the
usefulness of zero-mass particles in this paper for handling the
problem of a sphere rolling on an arbitrarily prescribed surface,
their use is described in a general enough manner so as to be
applicable to numerous other problems in analytical and multi-
body dynamics.
The dynamics of a rigid sphere rolling under gravity without slip-

ping on a surface is one of the classical problems of mechanics in
which nonholonomic constraints play an important role, and in
which the standard Lagrangian formalism is difficult to apply to
readily simulate the dynamical behavior when the surface is arbi-
trarily prescribed. One of the first contributions to this problem
was published by Lindelöf in 1895 [10], in which it seemed that
the author had completely solved the problem. Some years later,
Chaplygin analyzed Lindelöf’s paper and found an error. He
carried out an investigation of the problem of the motion of a
heavy body of revolution on a surface for a number of particular
cases [11,12]. In this work, Chaplygin derived the integrals of
motion of the system. Despite these contributions by Chaplygin,
the motion of a sphere was practically unstudied until Kilin in
2001 [13], derived the equations of the motion for a sphere on a
plane in an inertial frame thereby studying the trajectories of the
point of contact between the sphere and the plane. Borisov and
Mamaev [14] studied the motion of a rigid body rolling on a
plane and a sphere. Recently, Borisov et al. have extended their
study to a sphere rolling on the surface of a rotating cone [15].
Ivanov considers the long-time asymptotic motion of a homoge-
neous sphere moving on a horizontal rough plane with friction
[16]. Formulations of the problem and the determination of the
quantitative characteristics of motion for general (arbitrary) surfaces
on which a sphere rolls are not easily available.
The key idea underlying the approach used in this paper is to

develop a suitable unconstrained system [8], which is then con-
strained appropriately to yield the proper system of interest—in
this case, the rigid sphere rolling (under gravity) on a surface
without slipping. To accomplish this, instead of conceiving the
unconstrained system as being made up of a single body—the
sphere—which is then constrained to roll on the surface, we con-
ceive of the unconstrained dynamical system as a multi-body
system made up of two (or three) bodies: the rigid sphere, S, and
one (or more) zero-mass particle(s) located at an arbitrary point in
an inertial coordinate system. For now, let us begin by considering
a single zero-mass particle in addition to the sphere S as comprising
the unconstrained system. Later, we show how we can utilize a
second zero-mass particle to even greater advantage. The proper
dynamical system of interest is then obtained by constraining this
zero-mass particle to lie at all times on the arbitrarily prescribed
surface, Γ, on which S rolls and to be the point of contact
between this surface and the sphere S at each instant of time. We
show that this then leads to a simple, general formulation of the
problem since the constraints can most easily and conveniently be
expressed in terms of the coordinates and velocities of the point
of contact. The coordinates of the zero-mass particle (which is con-
strained to lie at the point of contact) are thus included in the set of
generalized coordinates that describe the dynamical system. This
causes the unconstrained system to have a singular mass matrix.
Recent developments in our understanding of the constrained beha-
vior of such singular mass systems are then used to directly provide
the explicit equations of motion [6,7,9].
Computational results showing the difference between the

motion of a homogeneous sphere and a non-homogeneous one
rolling on an asymmetrical surface are illustrated, along with mea-
sures of the accuracy of the computed results.

The paper is organized as follows. In Sec. 2, the problem is for-
mulated as a multi-body system that includes the sphere and one
zero-mass particle; this eases the description of the constraints.
Section 3 expands this idea to form a multi-body system with the
sphere and two zero-mass particles; this further eases the descrip-
tion of the unconstrained system as well as the constraints. Compu-
tational results are presented in Sec. 4. The last section gives our
conclusions relevant to the rolling sphere problem, and some
general remarks on the modeling of complex systems through the
use of zero-mass particles in analytical and multi-body dynamics.

2 Formulation of Problem
2.1 Description of the Unconstrained System. We begin

with an unconstrained system [8] described by a rigid non-
homogeneous sphere S of radius r and mass m whose center, O,
is located at (xo, yo, zo) and whose center of mass, C, is located at
(xC, yC, zC) in the XYZ inertial frame of reference (see Fig. 1).
The vector from the center of the sphere, O, to the point C is
denoted by ρ. The principal axes of inertia of the sphere that go
through the point C are denoted by x̂, ŷ, and ẑ, as shown; they
form a body-fixed right-handed coordinate frame of reference.
The moments of inertia of the sphere about these respective body-
fixed principal axes of inertia are denoted by J1, J2, and J3, and
the 3 × 3 moment of inertia matrix is denoted by J=Diag(J1, J2,
J3). In order to get away from singularities while describing the
rotational motion of the sphere S, we shall use the quaternion
4-vector (4 ×1 column vector) u:= [u0, u1, u2, u3]

T to describe its
orientation [17]. Hence, the position and orientation of the sphere
are described by the seven-component column vector of coordinates
qS: = [xo, yo, zo, u0, u1, u2, u3]T = [wT

o , u
T ]T , where wo:= [xo, yo,

zo]
T. The reason we choose the coordinates of O in our description

of the system is that the coordinates of O and those of the point of
contact between S and Γ are most convenient for writing the con-
straints that the sphere is subjected to when it rolls without slipping
on Γ.
Though we are interested primarily in the dynamics of the sphere

S, we begin by conceiving the unconstrained system as being com-
posed of two members: the sphere S and a particle P that has zero
mass located at an arbitrary point (α1, α2, α3) (see Fig. 1).
Thus, the 10-vector (10 ×1 column vector)

q: = [xo, yo, zo, u0, u1, u2, u3, α1, α2, α3]T : = [wT
o , u

T , αT ]T (1)

describes the position (configuration) of the ‘unconstrained’ system
consisting of the sphere S and the zero-mass particle P, where we
have denoted α= [α1, α2, α3]

T. By unconstrained we mean that
the components of the configuration vector q are assumed to be
independent of one another. The components of the column
vectors wo and α are measured in the inertial frame of reference
XYZ.

Fig. 1 The two-component unconstrained system composed of
(1) the rigid sphereS of radius r, whose center is located at (xo, yo,
zo) and (2) a zero-mass particle P located at (α1, α2, α3), sub-
jected to gravity
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The equations of motion of this unconstrained system subjected
to the downward force of gravity can now be easily written
down. Since the sphere S and the particle P are not connected in
any way, their equations of motion can be separately written. The
potential energy of the sphere S is given by V=mgzC; its kinetic
energy of translation is given by Ttrans: = (m/2)(ẋ2C + ẏ2C + ż2C),
and its kinetic energy of rotation is given by Trot= (1/2)ωTJω,
where the 3-vector ω: = [ωx̂, ωŷ, ωẑ]T is the absolute angular velo-
city of the sphere S whose components along the body-fixed coor-
dinate frame x̂ŷẑ are, respectively, ωx̂, ωŷ, and ωẑ.
We note that since the 3-vector ω is given by

ω: =
ωx̂

ωŷ

ωẑ

⎡
⎣

⎤
⎦ = 2Eu̇: = 2

−u1 u0 u3 −u2
−u2 −u3 u0 u1
−u3 u2 −u1 u0

⎡
⎣

⎤
⎦ u̇ (2)

the kinetic energy of rotation can also be written as
Trot = 2u̇TETJEu̇. Furthermore, the coordinates of the center of
mass C expressed in the inertial frame are given by

wC: =
xC
yC
zC

⎡
⎣

⎤
⎦ =

xo
yo
zo

⎡
⎣

⎤
⎦ + S

ρ1
ρ2
ρ3

⎡
⎣

⎤
⎦: = wo + Sρ (3)

where the components of the column vector ρ shown in Fig. 1 are
ρ1, ρ2, ρ3, which are constants in the body frame x̂ŷẑ. Since the
active orthogonal rotation matrix S in relation (3) is given by

S =

u20 + u21 − u22 − u23 2(u1u2 − u0u3) 2(u1u3 + u0u2)

2(u1u2 + u0u3) u20 − u21 + u22 − u23 2(u2u3 − u0u1)

2(u1u3 − u0u2) 2(u2u3 + u0u1) u20 − u21 − u22 + u23

⎡
⎢⎣

⎤
⎥⎦

:=

S1

S2
S3

⎡
⎢⎣

⎤
⎥⎦ (4)

using relations (2) and (3), the kinetic energy of the unconstrained
sphere S is obtained as

T(ẇo, u, u̇) = Ttrans + Trot =
m

2
[ẇT

o ẇo + 2ẇT
o Ṡρ + ρT Ṡ

T
Ṡρ]

+ 2u̇TETJEu̇ (5)

and its potential energy is given by

V(wo, u) = mgzC = mg[zo + S3ρ] (6)

where S3 is the third row of the rotation matrix S.
The Lagrangian L = T(ẇo, u, u̇) − V(wo, u) for the unconstrained

sphereS can be used to obtain its equation of motion using the usual
Lagrange equation

d

dt

∂ L
∂ q̇s

( )
−

∂ L
∂ qs

= 0 (7)

under the assumption that all the components of the seven-vector qs
are independent of one another.
Using the expression for the kinetic energy in Eq. (5), we obtain

∂ T
∂ ẇo

= mẇo + mṠρ = mẇo + mC1u̇ = mẇo + mC2u (8)

since Ṡρ = C1u̇ and

C1 = 2
u0ρ1 − u3ρ2 + u2ρ3 u1ρ1 + u2ρ2 + u3ρ3 −u2ρ1 + u1ρ2 + u0ρ3 −u3ρ1 − u0ρ2 + u1ρ3
u3ρ1 + u0ρ2 − u1ρ3 u2ρ1 − u1ρ2 − u0ρ3 u1ρ1 + u2ρ2 + u3ρ3 u0ρ1 − u3ρ2 + u2ρ3
−u2ρ1 + u1ρ2 + u0ρ3 u3ρ1 + u0ρ2 − u1ρ3 −u0ρ1 + u3ρ2 − u2ρ3 u1ρ1 + u2ρ2 + u3ρ3

⎡
⎣

⎤
⎦ (9)

with

C2 = Ċ1 (10)

Thus, we obtain using the second equality in Eq. (8),

d

dt

∂ T
∂ ẇo

( )
= mẅo + mC1ü + mC2u̇,

∂ T
∂wo

= 0, and

∂V
∂wo

= mg[0, 0, 1]T (11)

We note that the term ρT Ṡ
T
Ṡρ in Eq. (5) can be expressed as

ρT Ṡ
T
Ṡρ = ρT Ṡ

T
SST Ṡρ = ρT ω̃T (ST Ṡρ)

= (ω̃ρ)T (ω̃ρ) = (ρ̃ω)T (ρ̃ω) = ωT ρ̃T ρ̃ω (12)

where the skew-symmetric matrices ω̃ and ρ̃ are obtained from their
respective components (see Eqs. (2) and (3)) and are given by

ω̃ =
0 −ωẑ ωŷ

ωẑ 0 −ωx̂

−ωŷ ωx̂ 0

⎡
⎣

⎤
⎦ and ρ̃ =

0 −ρ3 ρ2
−ρ3 0 −ρ1
−ρ2 ρ1 0

⎡
⎣

⎤
⎦ (13)

In Eq. (12), we have made use of the fact thatω̃ = ST Ṡ. Using rela-
tions (12) and (2) in the expression for the kinetic energy

T(ẇo, u, u̇) given in Eq. (5), we obtain

T(ẇo, u, u̇) =
m

2
[ẇT

o ẇo + 2ẇT
oC1u̇] + 2u̇TET�JEu̇

=
m

2
[ẇT

o ẇo + 2ẇT
oC2u] + 2uTĖ

T�JĖu (14)

where the symmetric matrix �J = J + mρ̃T ρ̃.
Using the first equality in relation (14), we obtain

∂ T
∂ u̇

= mCT
1 ẇo + 4ET�JEu̇ (15)

so that

d

dt

∂ T
∂ u̇

( )
= mCT

1 ẅo + mĊ
T
1 ẇo + 4ET�JEü + 4Ė

T�JEu̇ + 4ET�JĖu̇

= mCT
1 ẅo + 4ET�JEü + mCT

2 ẇo + 4Ė
T�JEu̇ (16)

since Ėu̇ = 0. Also, using the second equality in relation (14), we
obtain

∂ T
∂ u

= mCT
2 ẇo + 4Ė

T�JĖu = mCT
2 ẇo − 4Ė

T�JEu̇ (17)

since Eu̇ = −Ėu and
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∂V
∂ u

= mg
∂ (S3ρ)
∂ u

= 2mg

−u2ρ1 + u1ρ2 + u0ρ3
u3ρ1 + u0ρ2 − u1ρ3
−u0ρ1 + u3ρ2 − u2ρ3
u1ρ1 + u2ρ2 + u3ρ3

⎡
⎢⎢⎣

⎤
⎥⎥⎦: = 2mgp (18)

where S3, as before, is the third row of the matrix S given in Eq. (4).
Thus, the equations of motion of the unconstrained sphere S

become

MS q̈S: =
mI mC1

mCT
1 4ET�JE

[ ]
ẅo

ü

[ ]

=
−mC2u̇ − mg[0, 0, 1]T

−8ĖT�JEu̇ − 2mgp

[ ]
: = Qs(qs, q̇s, t) (19)

where MS is a 7 × 7 symmetric matrix. We note from Eq. (19) that
the translational motion is coupled to the rotational motion and
that the matrix 4ET�JE is singular.
The equation of motion of the zero-mass particle P is trivial to

write down. Its mass being zero, no force can be applied to it,
and hence, its equation of motion is simply

MP α̈ = 0 (20)

where MP is a 3 × 3 zero matrix.
Using Eqs. (19) and (20), we obtain the unconstrained equation

of motion of the system composed of the sphere S and the particle P

MU q̈: =

mI mC1 0

mCT
1 4ET�JE 0

0 0 MP

⎡
⎢⎣

⎤
⎥⎦

ẅo

ü

α̈

⎡
⎢⎣

⎤
⎥⎦

=

−mC2u̇ − mg[0, 0, 1]T

−8ĖT�JEu̇ − 2mgp

0

⎡
⎢⎣

⎤
⎥⎦: = QU(q, q̇) (21)

where MU is a 10× 10 block diagonal matrix. The subscript U
denotes quantities related to the so-called unconstrained equation
of motion of the system described in Fig. 1. We note that the
matrix MP is zero and that the matrix MU is singular.

2.2 Description of the Constraints. Having obtained the
unconstrained equations of motion, we now constrain the sphere
S to roll without slipping on the surface Γ, and we constrain
the zero-mass particle P to lie on Γ and always be co-located with
the point of contact between the surface Γ and the sphere S (see
Fig. 2). The surface Γ(X, Y, Z )= 0 is described in terms of the iner-
tial coordinates X, Y, Z. It is because these constraints are most
easily expressible in terms of the coordinates of the point of
contact that lies on Γ that we add the coordinates of the zero-
mass particle P to our dynamical system, thereby facilitating the
development of the equations of motion of the desired dynamical
system [1–5], which we shall obtain in explicit form in the follow-
ing step in Sec. 2.3. We begin by listing out all the constraints.

(a) Surface Constraint: We begin by binding the zero-mass
particle P, which so far is located at an arbitrary point
(α1, α2, α3) in space, to lie on the surface Γ that is described
by the equation

φ1: = Γ(α1(t), α2(t), α3(t)) = 0 (22)

We shall denote the components (in the XYZ frame) of the
gradient of Γ by the three-vector (3 ×1 column vector) k so
that

k: =
∂Γ
∂ α1

,
∂Γ
∂ α2

,
∂Γ
∂ α3

[ ]T
(23)

and we shall henceforth assume that the sign of the expres-
sion Γ in the equation Γ= 0 (see Eq. (22)) is so chosen

that the third component of the gradient vector is positive
and points in the (upward) Z-direction. Taking the second
derivative with respect to time of the equation Γ= 0 that is
on the right-hand side of Eq. (22) yields the relation

kT α̈ + k̇T α̇ = 0 (24)

which can be immediately recast, noting our definition of the
column vector q in Eq. (1), as

A1 q̈ = b1 (25)

where

A1 = [01×7 | kT ], and b1 = −α̇T k̇ = −α̇T
∂k
∂α

[ ]
α̇ (26)

It should be noted that the coordinates (α1, α2, α3) of the
zero-mass particle, P, that moves on the surface Γ change
with time, t, as the sphere S rolls on it. Hence, the unit
normal to the surface Γ at (α1(t), α2(t), α3(t)) is given by
the three-component column vector

n(α1(t), α2(t), α3(t)) =
∇Γ
‖∇Γ‖ =

k����
kTk

√ (27)

(b) Tangency Constraint: This constraint that binds the particle P
to the point of contact between the sphere S and the surface Γ
is simply given by

φ2: = α + rn − wo = 0 (28)

where the column vector n is given in Eq. (27). Differentiat-
ing the equation on the right-hand side of Eq. (28) twice with
respect to time yields the relation

α̈ + rn̈ − ẅo = 0 (29)

which can similarly be expressed as

A2 q̈ = b2 (30)

Finding the second derivative of n with respect to time is
tedious and the Appendix gives the explicit expressions for
the 3 × 10 matrix A2 and the 3 ×1 column vector b2.

(c) Rolling No-Slip Constraint: This constraint requires that
there is no slip between the sphere S and the surface Γ as
the sphere rolls over the surface. Hence, the velocity of the
center of the sphere in the inertial frame of reference is
given by the relation

φ3: = ẇo + rñ Sω = 0 (31)

where the rotation matrix S given in Eq. (4) is used to trans-
form the components of the vector n×ω from the body frame
to the inertial frame, and ñ is the 3 × 3 skew-symmetric
matrix obtained, as before, from the components of the
column vector n in Eq. (27). Differentiating the equation
on the right-hand side of Eq. (31) once with respect to time
and noting Eq. (2), we obtain

ẅo + 2rñS Eü = −2rñṠEu̇ − 2r ˙̃nSEu̇ = −2r ˙̃nSEu̇ (32)

The first term on the right-hand side of the first equality in
Eq. (32) can be shown to be zero since we have
2rñṠEu̇ = 2rñSST ṠEu̇ = 2rñSω̃Eu̇ = rñSω̃ω = 0. These equ-
alities follow from the relations SST= I, ST Ṡ = ω̃, 2Eu̇ = ω,
and ω̃ω = 0. Equation (32) can again be easily expressed as

A3q̈ = b3 (33)

121006-4 / Vol. 88, DECEMBER 2021 Transactions of the ASME



where

A3 = [I3×3 | 2rñSE | 03×3] and b3 = −2r ˙̃nSEu̇ (34)

(d) Quaternion Constraint: For the four-vector u(t) to represent a
physical rotation at each instant of time, we need the ensure
that its norm is unity, so that

φ4: = uTu − 1 = 0 (35)

Differentiating the right-hand equation in Eq. (35) twice
with respect to time yields the relation

A4 q̈ = b4 (36)

where

A4 = [01×3 |uT |01×3], and b4 = −u̇T u̇ =−(u̇20 + u̇21 + u̇22 + u̇23)

(37)

The abovementioned four sets of constraints φi, i= 1, 2, 3,
4, can thus be collectively expressed as

A q̈: =

A1

A2

A3

A4

⎡
⎢⎢⎣

⎤
⎥⎥⎦ q̈ =

b1
b2
b3
b4

⎡
⎢⎢⎣

⎤
⎥⎥⎦: = b (38)

whereA is nowan8 × 10matrix andb is an 8-vector (8 ×1)with
the Ai and bi explicitly obtained earlier. We note in passing
that these constraints are not all independent of one another
and that thematrixA does not have full rank.Also, the elements
of the matrix A and the vector b are relatively easy to obtain,
since all that needs to be done is to differentiate with respect
to time the sets of constraint equations φi, i= 1, 2, 3, 4.

(e) Additional Consistent Constraints: One of the advantages of
using the three-step conceptual approach to obtain the equa-
tions of motion of the constrained system—here, the sphere
S rolling without slipping on the surface Γ—is that if one
knows a priori any integrals of motion of the system then
they can be included in the constraints. In this instance, we
know that the total energy of the sphere is conserved.
Using Eqs. (6) and (14), we then find that the energy, E(t),
at any time t is given by

E(t) = T(ẇo, u, u̇) + V(wo, u) =
m

2
[ẇT

o ẇo + 2ẇT
oC1u̇]

+ 2u̇TET�JEu̇ + mg[zo + S3ρ] = E(0) (39)

which upon differentiation once with respect to time yields
the relation

AE q̈ = bE (40)

where

AE = [mẇT
o + mu̇TCT

1 |mẇT
oC1 + 4u̇TET�JE | 01×3], and

bE = −[mẇT
oC2u̇ + mgżo + mgṠ3ρ]

(41)

We could, if we wanted to, add this additional constraint as an
additional row to the set of constraints given in Eq. (38) to obtain
the description of the constrained system, as we will show in Sec. 2.3.

2.3 Description of the Constrained System. Having obtained
Eq. (21) for the unconstrained system and the constraint equations
(38), the equation of motion of the constrained system is given
explicitly by [6]

q̈ =
(I − A+A)MU

A

[ ]+
QU

b

[ ]
(42)

where X+ denotes the Moore–Penrose (MP) inverse of the matrix X
[3,18]. We note that for the acceleration to be unique—and this
must be the case for a physical system described by classical
mechanics—a necessary and sufficient condition is that [6]

Rank([MU |AT ]) = Number of components in column vector q

(43)

This (full) rank condition on the matrix on the left-hand side of
relation (43) serves as a check on whether the constrained system
has been modeled appropriately [6]. Equation (42) is true even
when the constraints are not functionally independent and the
matrix A does not have full rank. The addition of constraints that
are consistent with those described therefore does not limit the
use of these relations. This aspect of the general approach described
here in modeling the dynamics of the rolling sphere becomes useful
when dealing with more complex dynamical systems [8].
When relation (43) is satisfied, an alternate way of obtaining the

acceleration q̈ of the constrained system is to consider an equivalent
dynamical system with the augmented mass matrix M̂U given by

M̂U =MU + κ2ATA > 0 (44)

where κ is any real non-zero number [7,9]. The acceleration of the
constrained system (when relation (43) is satisfied) is then given
explicitly by the fundamental equation [3,9] as

q̈ = M̂−1
U QU + M̂−1

U AT (AM̂−1
U AT )+(b − AM̂−1

U QU) (45)

As before, Eq. (45) is true even when the constraints are not func-
tionally independent and the matrix A does not have full rank.
It should be noted that Eqs. (42) and (45) are the explicit equa-

tions of motion for the same sphere constrained to roll without slip-
ping on an arbitrarily prescribed surface, Γ(X, Y, Z )= 0, and they
each yield the same acceleration q̈.

3 An Alternative Formulation of the Problem Using
Two Zero-Mass Particles
We notice that a major amount of effort is expended in the devel-

opment of the unconstrained equations of motion. The complexity
in getting them is principally caused by the fact that while the
translational kinetic energy of the sphere S is simply
Ttrans: = (m/2)(ẋ2C + ẏ2C + ż2C), we want to use the coordinates of
the center of the sphere O instead of those of its center of mass C
in our formulation, since the constraints are most easily expressed
in terms of the location of the sphere’s center O. This leads to

Fig. 2 The constrained system in which (a) the sphere, S, is in
contact with the surface Γ and (b) the zero-mass particle, P,
moves on the surface and is always located at the point of
contact between the sphere S and the surface Γ (X,Y,Z)=0. The
sign of Γ is so chosen that the unit normal vector, n, to the
surface at the point P has a positive Z component.
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considerable algebra (see Eqs. (7)–(19)) resulting finally in the
coupled set of equations for the unconstrained sphere S obtained
in Eq. (19).
In retrospect then, one could greatly simplify the task of writing

the unconstrained equations of motion of the sphere S, by including
the coordinates of its center of mass C in its dynamical description.
However, in order to conveniently express the constraints, we also
need the coordinates of O to be included in the dynamical descrip-
tion. To accomplish this with some ease, we use an additional zero-
mass particle Q located at an arbitrary point in space, which we will
later constrain to be always coincident with the center O of the
sphere. Our three-step procedure for obtaining the equations of
motion then appears as follows.

3.1 Description of the Modified Unconstrained System. We
take our unconstrained system to consist of three components:
(1) the sphere S, whose configuration is described by the coordi-
nates wC= [xC, yC, zC]

T and quaternion 4-vector u; (2) the zero-mass
particle P at an arbitrary location α in the XYZ frame, and (3) a
second zero-mass particle Q located at an arbitrary location wo=
[β1, β2, β3]

T (see Fig. 3). The description of this three-component,
multi-body dynamical system, in which the three bodies are taken
to be totally unconnected is given, at each instant of time, by the
augmented 13 component configuration vector

qa: = [β1, β2, β3, u0, u1, u2, u3, α1, α2, α3, xC , yC , zC]
T :

= [wT
o , u

T , αT , wT
C]

T (46)

Besides the additional coordinates wC, added to the vector qa, the
crucial difference between the vector q in Eq. (1) and the vector qa
in relation (46) is that whereas the first three coordinates xo, yo, zo in
the vector q refer to those of the center O of the sphere S, the first
three coordinates β1, β2, β3 of the augmented vector qa refer to the
coordinates of a zero-mass particle located at an arbitrary point wo

in space.
The unconstrained equations of motion for this three-component

system, in which we assume that each of the generalized coordi-
nates are independent of one another, are now trivial to write
down. Since the kinetic energy and the potential energy of the
sphere S are given by

T(u, u̇, ẇC) = Ttrans + Trot =
mẇT

CẇC

2
+ 2u̇TETJEu̇ (47)

and

V(wC) = mg zC (48)

respectively, its unconstrained equation of motion is given by the
following simple set of equations:

M̃S
ü
ẅC

[ ]
: = 4ETJE 0

0 mI

[ ]
ü
ẅC

[ ]
= −8ĖT

JEu̇
−mg[0, 0, 1]T

[ ]
(49)

in which the translational and rotational motions, unlike in Eq. (19),
are now uncoupled.
The equations of motion of the zero-mass particles P and Q, as

before, are simply

MP α̈ = 0 and MQẅo = 0 (50)

respectively, where MPand MQ are each 3 × 3, zero matrices, since
no force can be applied to them. Thus, the equation of motion of this
three-component, multi-body, unconstrained system is then

M̃Uq̈a: =

MQ 0 0 0

0 4ETJE 0 0

0 0 MP 0

0 0 0 mI

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

ẅo

ü

α̈

ẅC

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

=

0

−8ĖT
JEu̇

0

−mg[0, 0, 1]T

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦: = Q̃U(qa, q̇a) (51)

The augmented configuration 13-vector that now includes the
coordinates of the zero-mass particle Q is denoted by qa, and the
13 ×13 augmented mass matrix is denoted by M̃U .
A comparison of Eqs. (5)–(19) with Eqs. (47)–(50) shows the

ease with which the unconstrained equations of motion of the
system are now obtained. As seen, the addition of a second zero-
mass particle makes the unconstrained equations of motion of the
system trivial to write. The matrix M̃U of the unconstrained
system is now block diagonal and Eq. (51) is uncoupled. It is
much easier to write, and simpler, than Eq. (21) that was obtained
earlier. The mass matrix M̃U is singular though, since the matrices
MP, MQ, and 4ETJE are singular matrices.

3.2 Description of the Constraints. Since the constraints, as
we saw earlier, can be easily expressed in terms of the coordinates
of the center O of the sphere and the point of contact, our intention
in adding the zero-mass particles P and Q to the unconstrained
description of the dynamical system, is, in this step, to now:

(1) constrain the particle P, as before, so that it lies on Γ and is
always the point of contact between the sphere S and Γ, and

(2) constrain the particle Q so that it always coincides with the
center O of the sphere, thereby forcing the particle Q
located at wo= [β1, β2, β3]

T to be co-located (coincide)
with O (see Fig. 4).

In addition to these two sets of constraints, we may add any other
constraints that the dynamical system may be known to satisfy.
To model the sphere S rolling without slipping on the surface Γ,

we therefore need the same four sets of constraints φi, i= 1, 2, 3, 4,
that we obtained in Sec. 2.2. These eight constraints can be
expressed in terms of our new description of the system using the
vector qa as (the subscript “a” stands for the augmented configura-
tion vector)

A1 |
A2 | 08×3
A3 |
A4 |

⎡
⎢⎢⎣

⎤
⎥⎥⎦ q̈a =

b1
b2
b3
b4

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (52)

Fig. 3 The unconstrained system is conceived of as a multi-
body system made up of three components—the sphere S sub-
jected to gravity and the two zero-mass particles P and Q.
Through the use of constraints, the particle P in the next step
will be made to coincide, as before, with the point on the
surface Γ that is in contact with the sphere S, and now the parti-
cle Q will be made to coincide with the center O of the sphere S.
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where the explicit expressions for the A′
is and b′is are provided in

Sec. 2.2. In addition, we need to add constraints that cause the zero-
mass particle Q to coincide with the point O. This can be done by
simply requiring that relation (3) be true so that

φ5: = wo + Sρ − wC = 0 (53)

which upon differentiation twice with respect to time yields

ẅo + S̈ρ − ẅC = 0 (54)

Noting that Ṡρ = C1u̇ where C1 is given in Eq. (9), Eq. (54) sim-
plifies to

ẅo + C1ü − ẅC + C2u̇ = 0 (55)

which can be expressed as

A5q̈a = b5 (56)

where

A5 = [I |C1 | 03×3 | − I] and b5 = −C2u̇ (57)

The five sets of constraints φi, i= 1, 2, 3, 4, 5, thus yield the aug-
mented relation

Aaq̈a = ba (58)

in which the matrices Ai, i= 1,2,3,4,5, are stacked one below the
other as are the elements bi, i= 1,2,3,4,5 in the column vector ba.
The matrix Aa that specifies all these constraints is now 11 × 13.
We note that we could add as many more constraints as we wish,

as long as they are all consistent; they need not be independent. For
example, we can add the constraint that the distance between the
center O of the sphere and the point C is a constant l equal to the
magnitude of the vector ρ. This would yield the relation

φ6: = (wo − wC)
T (wo − wC) = l2 (59)

which upon differentiation twice with respect to time would yield

(wo − wC)
T (ẅo − ẅC) = −(ẇo − ẇC)

T (ẇo − ẇC) (60)

so that

A6 = [(wo − wC)
T | 01×4 | 01×3 | − (wo − wC)

T ] and

b6 = −(ẇo − ẇC)
T (ẇo − ẇC) (61)

In modeling complex systems, the facility of listing as many con-
straints as one can think of without worrying about which of them
may be functionally dependent is an important convenience
afforded by the three-step approach used here; this is especially
useful when there are several nonholonomic constraints.

As before, one could also add the constraint that the energy, E(t),
at any time t, equals E(0), to the stack of constraints given in
Eq. (58). Noting that the energy is given by a much simpler expres-
sion than before as

E(t) = T(u, u̇, ẇC) + V(wC) =
m ẇT

CẇC

2
+ 2u̇TETJEu̇ + mg zC

(62)

and differentiating it once with respect to time, we get the relation

AE q̈a = bE (63)

where

AE = [01×3 | 4u̇TETJE | 01×3 |m ẇT
C] and bE = −mg żC (64)

Comparing Eqs. (39)–(41) with Eqs. (62)–(64), we note the con-
siderable simplicity that accrues with the additional zero-mass par-
ticle Q in our formulation of the problem.
The third and final step of our procedure calls for obtaining the

constrained equations of motion.

3.3 Description of the Constrained System. The explicit
equations of motion of the constrained system are obtained, as we
did in Sec. 2, by using Eq. (42) or (44) and (45), but now with
M̃U and Q̃U given in Eq. (51) and Aa and ba given in Eq. (58),
instead of MU, QU, A, and b.

4 Numerical Example
Consider a solid sphere of radius r= 6 cm. The sphere is placed

on an unsymmetrical surface whose equation is given by the poly-
nomial

Γ(X, Y , Z): = Z −
∑i=4
i=1

hi
i
Xi = 0 (65)

in which the coefficients h1= 0.65, h2= − 3, h3= − 6.7, and h4=
20.5. The shape of the surface is shown in Fig. 5.
At the initial time, the sphere is located touching the surface Γ

with α1(0)= −0.65 m, α2(0)= 0.1 m; it has no angular velocity
(spin) about an axis normal to the surface. The initial velocity com-
ponents of the point O located at the center of sphere are taken to be
ẋo = 0.2 m/s and ẏo = −0.3 m/s. The origin of the body-fixed x̂ŷẑ
coordinate frame is at the center of the uniform sphere. At time
t = 0, these body-fixed x̂, ŷ, and ẑ axes are taken to be along the
X, Y, and Z directions, respectively, of the inertial frame XYZ
axes. Hence, the quaternion u(t= 0)= [1, 0, 0, 0]T. Using these
initial conditions, the other initial conditions are all determined
using the constraint equations.
For illustrating our numerical results, the model developed in

Sec. 2 with one zero-mass particle P is used. In addition to the
four sets of constraints given Eq. (38), we have added the energy
conservation constraint given in Eqs. (40) and (41). Similar

Fig. 4 The zero-mass particle P is constrained to lie at the point
of contact between the sphere S and the surface Γ, and the zero-
mass particle Q is constrained to lie at the center of the sphere S
located at O

Fig. 5 Asymmetrical cross section of the surface Γ onwhich the
sphere S rolls without slipping
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numerical results are obtained when using the augmented model of
Sec. 3 which uses the two zero-mass particles P and Q. The results
for this case are not shown here for brevity.
Figure 6 shows the motion of a uniform density titanium sphere

with density d= 4500 kg/m3. The value of g is taken to be 9.81 m/s.
The matrix MU and the vector QU are explicitly obtained from
Eq. (21), and the matrix A and the vector b are explicitly obtained
by using Eqs. (26), (30), (34), (37), and (41). Using a value of
κ2 = 0.02 in the numerical procedure, we obtain M̂U from
Eq. (44). The explicit equations of motion of the sphere rolling
on the surface are then obtained by substituting M̂U , QU, A, and b
into Eq. (45).
The computations are done on the MATLAB platform, and a modi-

fied variable-step (4,5)-Runge–Kutta integrator is used with a rela-
tive error tolerance of 10−11 and an absolute error tolerance of 10−15.
That the matrix [MU |AT ] has full rank is numerically checked

throughout the integration, which is carried out for a duration of
10 s. The solid blue line shows the motion of the center of the

sphere. The dashed red line shows the motion of the point of
contact between the sphere and the surface Γ. Since the coordinates
of the point of contact are contained in the generalized coordinates
that describe the system’s configuration at each instant of time, inte-
gration of the equations of motion of the dynamical system directly
yields the motion of this point as the sphere rolls on the surface Γ.
Errors in the satisfaction of the constraints φi= 0, i= 1, 2, 3, 4,

given in Eqs. ((22)), (28), (31), and (35) are shown in Fig. 7. We
observe that these errors are all of the same order of magnitude as
the error tolerances used in the numerical integration of the equa-
tions of motion.
More generally, one could, as we did for the point of contact

between the sphere and the surface,

(i) “paste” a zero-mass particle at any point on the sphere (or a
dynamical system),

(ii) include its coordinates as part of the configuration vector
that describes the dynamical system,

(iii) provide the appropriate constraints for the system, including
those on the zero-mass particle,

(iv) use the equations of constrained motion for singular mass
matrices [6–9], and

(v) thereby directly obtain the motion at that point.

We next consider the motion of the same solid sphere (radius
6 cm) to be non-uniform in its density with half of it made from tita-
nium (density d1= 4500 kg/m3) and half made of vanadium
(density d2= 5494 kg/m3). The origin of the body-fixed x̂ŷẑ coordi-
nate system is now at the center of mass of the non-uniform sphere
and not at its center. The body-fixed x̂-axis is chosen to lie along the
line of axisymmetry of the non-uniform sphere, its positive direc-
tion pointing away from the lighter hemisphere. The center of
mass therefore lies on this axis. Being a line of axisymmetry, a prin-
cipal axis of moment of inertia of the sphere (with the origin at the
center of mass of the sphere) also lies along this axis. The other two
principal axes of moment of inertia lie in a plane perpendicular to
the x̂ axis; they are chosen initially to be along the inertial Y- and
Z-axis forming a right-handed triad. Thus, at time t= 0, as before,
the quaternion u(t= 0)= [1, 0, 0, 0]T. The same initial conditions
are provided to the non-uniform sphere as were provided to the
uniform sphere, and the numerical procedures and error tolerances

Fig. 7 Time history of errors in the satisfaction of the four con-
straints for the uniform sphere

Fig. 6 A uniform sphere rolling without slipping on the unsym-
metrical surface whose cross section is shown in Fig. 5. The
motion is along the negative Y direction. The final position of
the sphere at the end of 10 s is shown.

Fig. 8 The motion of the non-uniform sphere showing its trace
on the surface (dashed line) and the motion of its center (solid
line)
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are kept as before. Again, no initial spin is given to the sphere along
the axis normal to the surface Γ.
Figure 8 shows the surface Γ drawn to the same scale as that in

Fig. 6. The solid blue line shows the motion of the center of the non-
uniform sphere, and the dashed red line shows the motion of the
point of contact between the sphere and the surface. As seen from
Figs. 6 and 8, the trajectory of the uniform and non-uniform
sphere are vastly different though they start with the same initial
conditions. Figure 9 shows the errors in the satisfaction of the
four constraints φi = 0, i = 1, 2, 3, 4, as earlier.
Lastly, in Fig. 10, we show the error in the satisfaction of the

requirement that the energy of the system remains a constant.
These errors are shown for both the uniform and the non-uniform
density sphere. On the vertical axis is plotted [E(t)−E(t= 0)]/
E(t = 0), where E(t) denotes the energy of the sphere at time t.
This serves as a check on the numerical accuracy of the results,
since we know that the energy of the system is to remain a constant.
The errors are seen to be of the order of the round off errors in the
machine’s computation.

5 Conclusions
This paper shows that zero-mass particles can be useful in

increasing the ease with which models for complex multi-body
systems can be formulated and their explicit equations of motion
obtained. Their use causes the number of coordinates involved in
describing the mechanical system to be greater than the minimum
number needed. Such additional coordinates are not commonly
used in modeling complex systems because they lead to descrip-
tions that have singular mass matrices, and these matrices being
noninvertible, cannot be handled in the standard manner in

Lagrangian mechanics. However, recent advances in our under-
standing of constrained motion in analytical dynamics allow us to
utilize singular mass matrices when appropriate constraints are
imposed on the additional coordinates. It is this advance in analyt-
ical and multi-body dynamics on which the effective use of these
zero-mass particles hinges.
In modeling of complex multi-body systems and obtaining their

equations of motion, it appears best to follow the three-step strategy
of (a) writing the unconstrained equations of motion of the system;
(b) writing the constraints; and (c) obtaining the explicit constrained
equation of motion [8]. The third step is obtained directly from the
first two by using the explicit fundamental equation of constrained
motion. Hence, it is the first two steps that are usually problematic
in the description of complex multi-body systems. The use of zero-
mass particles can play a significant role in easing the description
of these two steps. This is demonstrated by considering the
problem of a sphere rolling under gravity on an arbitrary surface
without slipping.
For the rolling sphere, in order to be able to write the constraints

in an easy and simple manner, we need the coordinates of two
points—the location of the center of the sphere, and the location
of the point of contact between the sphere and the arbitrarily pre-
scribed surface. While the coordinates of the center of the sphere
can be included in the set of generalized coordinates, those of the
point of contact are usually not. The addition of a zero-mass particle
at the point of contact in the description of our system, which then
naturally expands the set of generalized coordinates, makes writing
down these constraints trivial, as shown. However, this leads to a
singular mass matrix. This zero-mass particle is constrained to coin-
cide with the point of contact between the sphere and the surface,
and the point of contact is thereby included in the dynamical
description of the multi-body system now consisting of the sphere
and the zero-mass particle. Application of the explicit fundamental
equation of constrained motion using an augmented mass matrix
gives the equations of motion of the multi-body system. Upon inte-
gration, the system’s motion is obtained, and the path traced out on
the (arbitrary) surface by the point of contact between the sphere
and the surface, as the sphere rolls over it, is thus obtained simply
and directly though this dynamical formulation. This approach is
further widened in the section that follows by considering the multi-
body system made as up of the sphere and two zero-mass particles.
This further simplifies writing of the unconstrained equations of
motion as well as the constraints.
Zero-mass particles can thus also be useful in easing the descrip-

tion of the unconstrained system. For the rolling sphere, we observe
that the kinetic energy of the unconstrained system can be trivially
written by using the coordinates of the center of mass of the sphere.
In Sec. 3, we therefore additionally include the coordinates of the
center of mass of the sphere in our dynamical description.
However, this then calls for the use of two zero-mass particles in
the description of the unconstrained system, because we also need
the coordinates of the center of the sphere in order to write the con-
straints in a simple manner, as the sphere rolls on the surface. One of
the particles, as before, is later constrained to be the point of contact
between S and Γwhile the other zero-mass particle is constrained to
coincide with the center of the sphere. Expanding the set of gener-
alized coordinates by including two additional zero-mass points to
describe the dynamical system now permits both the unconstrained
equation of motion of the system and the constraints to be trivially
written down. The unconstrained equations of motion are again sin-
gular. Addition of the constraints, in terms of this expanded set of
generalized coordinates, allows the equations of motion of the con-
strained system—the sphere rolling on the surface without slip—to
be obtained explicitly through application of the fundamental equa-
tion of constrained motion.
More generally, in the dynamics of complex multi-body systems,

constraints play a very significant and near-central role. Often these
constraints can be most easily written in terms of the coordinates of
one or more points that are not part of the set that has the minimum
number of generalized coordinates needed to describe the

Fig. 9 Time history of the errors φi , i = 1, 2, 3, 4, in the satisfac-
tion of the four constraints for the non-uniform density sphere

Fig. 10 Time history of the change in energy of the sphere
showing that the numerical integration preserves the constraint
that the energy is a constant
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configuration of a multi-body system. To use additional coordinates
that can conveniently convey information about the system’s con-
straints, one can “label” such points by placing zero-mass particles
at these locations and including them in the dynamical description
of the system, as shown in the example of a rolling sphere in this
paper. This can greatly ease not only the description of the con-
straints but also the development of the unconstrained equations
of motion, as illustrated.
At other times, one may be interested in simply finding the

motion of one or more specific points (locations) in a complex
mechanical system. Such points can be similarly “labeled” by
placing zero-mass particles, like post-in stickers, at those specific
locations and directly incorporating these points into the description
of the dynamical configuration of the multi-body system. At these
labeled points, one can simply

(i) “paste” zero-mass particles at desired locations in a mechan-
ical system (more generally, in any dynamical system),

(ii) include their coordinates as part of the configuration vector
that describes the dynamical system and write the equations
of motion pertaining to them, which is trivial, but which
leads to a system with a singular mass matrix,

(iii) provide appropriate constraints, including those on the
zero-mas particles, and

(iv) obtain the constrained equations of motion of the dynamical
system using the explicit equations of motion developed in
Refs. [6,7,9].

The resulting equations are easily amenable to computation, and
they directly yield the motion (displacements, velocities, and accel-
erations) at the labeled locations where the zero-mass particles are
placed in the dynamical system.

Appendix
In this appendix, we obtain the matrix A2 and the vector b2. The

gradient vector to the surface Γ has components in the XYZ inertial
frame given by

k =
∂Γ
∂α1

,
∂Γ
∂α2

,
∂Γ
∂α3

[ ]T

with the sign of Γ(α1, α2, α3) chosen so that the last component of k
is positive. The unit normal n to the surface therefore has compo-
nents given by n = k/

����
kTk

√
so that

ṅ =
1����
kTk

√ ∂k
∂α

α̇ −
k̇
T
k

(kTk)3/2
k, and

n̈ = Δ
∂k
∂α

α̈ + Δ
d

dt

∂k
∂α

( )
α̇ + δk −

2k̇
T
k

(kTk)3/2
k̇

where

Δ =
1����
kTk

√ I3 −
kkT

kTk

[ ]
, δ =

1

(kTk)3/2
3(k̇

T
k)

2

kTk
− k̇

T
k̇

⎡
⎣

⎤
⎦, and

k̇ =
∂k
∂α

α̇

.

Hence, the constraint α̈ + rn̈ − ẅo = 0 can be written as A2q̈ = b2
where

A2 = −I3×3 | 03×4 | I + rΔ
∂k
∂α

[ ]
, and

b2 = −r Δ
d

dt

∂k
∂α

( )
α̇ + kδ −

2k̇
T
k

(kTk)3/2
k̇

[ ]
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